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foreach + iterators

foreach
• A for-loop/lapply hybrid
• Similar to foreach and list
comprehensions  in Python and other
languages

iterators
• Similar to Java iterators
• nextElem ()

 The content of this web site is Copyright 2009 by 
REvolution Computing, Inc. All rights reserved. The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved 
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foreach (iterator) %dopar% 

{ 

statements 

}

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved 
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> foreach (j=1:4) %dopar% {sqrt (j)}

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

[[4]]

[1] 2

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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Aggregation/reduction wih .combine:

> foreach(j=1:4, .combine=c) %dopar% {sqrt(j)}

[1] 1.000000 1.414214 1.732051 2.000000

> foreach(j=1:4, .combine='+') %dopar% sqrt(j)

[1] 6.146264

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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Foreach is more general than most  implementations of parallel 
lapply. The following typically doesn’t work with 
miscellaneous parLapplys:

> z <- 2

> f <- function (x) sqrt (x + z)

> foreach (j=1:4, .combine='+') %dopar% f(j)

[1] 8.417609

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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Here is a simple simulation:

birthday <- function(n) {

ntests <- 1000

pop <- 1:365

anydup <- function(i) 

any(duplicated(

sample(pop, n, replace=TRUE)))

sum(sapply(seq(ntests), anydup)) / ntests

}

x <- foreach (j=1:100) %dopar% birthday (j)

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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%dopar%

Modular parallel backends:

• doSEQ (the default)
• doNWS (NetWorkSpaces)
• doSNOW
• doRMPI
• doSMP
• doMulticore

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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A simple example: backtesting a technical trading rule
(with TTR, quantmod, PerformanceAnalytics and foreach):

startDate <- "2007-01-01"

endDate <- Sys.Date()

MSFT      <- getSymbols("MSFT", …

IEF       <- getSymbols("IEF", …
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Ra <- Return.calculate (Cl(MSFT))

Rb <- Return.calculate (Cl(IEF))

chart.CumReturns (cbind (Ra,Rb))

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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A very simple trading rule:

simpleRule <- function (z, fast=12, slow=26, 

signal=9, instr, benchmark)

{

x <- MACD (z, nFast=fast, nSlow=slow, 

nSig=signal, maType="EMA")

position <- sign(x[,1]-x[,2])

s <- xts(position,order.by=index(z))

return (instr*(s>0) + benchmark*(s<=0))

}

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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Brute-force optimization of the fast and slow parameters:

M <- 100

S <- matrix(0,M,M)

for (j in 1:(M-1)) {

for (k in min ((j+2),M):M) {

R <- simpleRule (Cl (MSFT),j,k,9, Ra, Rb)

Dt <- na.omit (R - Rb)

S[j,k] <- mean (Dt)/sd(Dt)

}

}

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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With foreach:

M <- 100

S <- foreach (j=1:(M-1), .combine=rbind, 

.packages=c('xts','TTR')) %dopar% {

x <- rep(0,M)

for (k in min ((j+2),M):M) {

R <- simpleRule (Cl (MSFT),j,k,9,Ra,Rb)

Dt <- na.omit (R - Rb)

x[k] <- mean (Dt)/sd( Dt)

}

return(x)

}
The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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j <- which (S==max(S), arr.ind=TRUE)

Ropt <- simpleRule (Cl (MSFT),j[1],j[2],9,Ra,Rb)

chart.CumReturns (cbind (Ra,Rb,Ropt))

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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require ("spatstat") 

function showIm (S) { 

(wrapper for image) … }

for (j in 3:20) { 

S <- S3[,,j] 

showIm(S) 

}

Thee parameters are nicely visualized with the spatstat

package

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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foreach (iterator) %dopar% {tasks}

foreach …

task task

foreach …

task task

CLUSTER

SMP

An example of explicit multi-paradigm ||ism

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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require (‘snow’)

require (‘foreach’)

require (‘doSNOW’)

cl <- makeCluster (c (‘n1’, ‘n2’))

registerDoSNOW ()

foreach (iterator, 

.packages=c (‘foreach’, ‘doMETHOD’)

%dopar%

{

registerMETHOD ()

foreach (iterator) %dopar% {

tasks…

}

}
The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved
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Summary

Foreach is a simple approach to parallel
computing with R that maps naturally on 
to a number of existing systems for distributed
computing. 

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved


