

CONFIDENTIAL

2REvolution Computing 2009

foreach + iterators

foreach
• A for-loop/lapply hybrid
• Similar to foreach and list
comprehensions in Python and other
languages

iterators
• Similar to Java iterators
• nextElem ()

 The content of this web site is Copyright 2009 by
REvolution Computing, Inc. All rights reserved. The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

3REvolution Computing 2009

foreach (iterator) %dopar%

{

statements

}

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

4REvolution Computing 2009

> foreach (j=1:4) %dopar% {sqrt (j)}

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

[[4]]

[1] 2

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

5REvolution Computing 2009

Aggregation/reduction wih .combine:

> foreach(j=1:4, .combine=c) %dopar% {sqrt(j)}

[1] 1.000000 1.414214 1.732051 2.000000

> foreach(j=1:4, .combine='+') %dopar% sqrt(j)

[1] 6.146264

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

6REvolution Computing 2009

Foreach is more general than most implementations of parallel
lapply. The following typically doesn’t work with
miscellaneous parLapplys:

> z <- 2

> f <- function (x) sqrt (x + z)

> foreach (j=1:4, .combine='+') %dopar% f(j)

[1] 8.417609

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

7REvolution Computing 2009

Here is a simple simulation:

birthday <- function(n) {

ntests <- 1000

pop <- 1:365

anydup <- function(i)

any(duplicated(

sample(pop, n, replace=TRUE)))

sum(sapply(seq(ntests), anydup)) / ntests

}

x <- foreach (j=1:100) %dopar% birthday (j)

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

8REvolution Computing 2009

%dopar%

Modular parallel backends:

• doSEQ (the default)
• doNWS (NetWorkSpaces)
• doSNOW
• doRMPI
• doSMP
• doMulticore

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

9REvolution Computing 2009

A simple example: backtesting a technical trading rule
(with TTR, quantmod, PerformanceAnalytics and foreach):

startDate <- "2007-01-01"

endDate <- Sys.Date()

MSFT <- getSymbols("MSFT", …

IEF <- getSymbols("IEF", …

CONFIDENTIAL

10REvolution Computing 2009

Ra <- Return.calculate (Cl(MSFT))

Rb <- Return.calculate (Cl(IEF))

chart.CumReturns (cbind (Ra,Rb))

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

11REvolution Computing 2009

A very simple trading rule:

simpleRule <- function (z, fast=12, slow=26,

signal=9, instr, benchmark)

{

x <- MACD (z, nFast=fast, nSlow=slow,

nSig=signal, maType="EMA")

position <- sign(x[,1]-x[,2])

s <- xts(position,order.by=index(z))

return (instr*(s>0) + benchmark*(s<=0))

}

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

12REvolution Computing 2009

Brute-force optimization of the fast and slow parameters:

M <- 100

S <- matrix(0,M,M)

for (j in 1:(M-1)) {

for (k in min ((j+2),M):M) {

R <- simpleRule (Cl (MSFT),j,k,9, Ra, Rb)

Dt <- na.omit (R - Rb)

S[j,k] <- mean (Dt)/sd(Dt)

}

}

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

13REvolution Computing 2009

With foreach:

M <- 100

S <- foreach (j=1:(M-1), .combine=rbind,

.packages=c('xts','TTR')) %dopar% {

x <- rep(0,M)

for (k in min ((j+2),M):M) {

R <- simpleRule (Cl (MSFT),j,k,9,Ra,Rb)

Dt <- na.omit (R - Rb)

x[k] <- mean (Dt)/sd(Dt)

}

return(x)

}
The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

14REvolution Computing 2009

j <- which (S==max(S), arr.ind=TRUE)

Ropt <- simpleRule (Cl (MSFT),j[1],j[2],9,Ra,Rb)

chart.CumReturns (cbind (Ra,Rb,Ropt))

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

15REvolution Computing 2009

require ("spatstat")

function showIm (S) {

(wrapper for image) … }

for (j in 3:20) {

S <- S3[,,j]

showIm(S)

}

Thee parameters are nicely visualized with the spatstat

package

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

16REvolution Computing 2009

foreach (iterator) %dopar% {tasks}

foreach …

task task

foreach …

task task

CLUSTER

SMP

An example of explicit multi-paradigm ||ism

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

17REvolution Computing 2009

require (‘snow’)

require (‘foreach’)

require (‘doSNOW’)

cl <- makeCluster (c (‘n1’, ‘n2’))

registerDoSNOW ()

foreach (iterator,

.packages=c (‘foreach’, ‘doMETHOD’)

%dopar%

{

registerMETHOD ()

foreach (iterator) %dopar% {

tasks…

}

}
The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

CONFIDENTIAL

18REvolution Computing 2009

Summary

Foreach is a simple approach to parallel
computing with R that maps naturally on
to a number of existing systems for distributed
computing.

The contents of this presentation is Copyright 2009 by REvolution Computing, Inc. All rights reserved

